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Abstract-Evolutionary processes of a polydisperse assemblage of particles in metastable or reactive 
surroundings are studied with allowance for the back influence of the assemblage upon the transient 
properties of the surroundings. Each particle either grows or reduces in size due to mass and heat exchange 
with the ambient medium in which it is immersed, the growth or reduction rate being given in a sufficiently 
general form as a function of both the particle size and the state of the medium. However, there is no 
generation of nuclei that give rise to new particles and the external supply to, or the forced withdrawal of 
particles from, the system are left out of the account. A mathematical model to deal with such processes is 
put forward, which is based on the kinetic equation for the particle population density and on mass and 
heat conservation equations for the system as a whole. The model can be generalized to situations when 
the particles are not distributed over their radius but over another relevant physical character. Examples 
of the application of the model to assemblages involved in evolution processes of different physical origin 

lead to very simple final formulae which agree well with experimental findings. 

1. INTRODUCTION 

A great number of processes occurring in both nature 
and industry are based on a particulate system 
interacting with its environment. A prominent place 
is taken by the formation and subsequent devel- 
opment of a system of discrete elements of a new phase 
in a metastable medium. Good examples are offered 
by the condensation and evaporation of droplets in 
super- or undersaturated gas-vapour mixtures [l, 21, 
of extreme importance in power engineering, as well 
as by crystallization [3,4] and dissolution [5] of poly- 
disperse solids in a metastable liquid or gaseous 
phase-the processes forming a background for a 
wide variety of batch crystallizers, granulators and 
other devices in chemical engineering. 

A significant feature of such processes the existence 
of non-linear feedbacks between’the evolution of a 
particulate assemblage and an ensuing change in the 
state of the metastable surroundings. So far as the 
emergence of a dispersed phase is concerned, the 
degree of metastability is gradually reduced as the 
assemblage evolves, with evident consequences for 
both the growth rate of individual particles and the 

t Present address : 7200 Bollinger Rd # 3 11, San Jose, CA 
95129, U.S.A. 
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generation of initial critical nuclei [6] that give rise to 
new particles. 

Apart from the growth and reduction of the dis- 
persed phase, many processes of the same type are 
encountered while manufacturing and handling 
diverse dispersed solid materials as well as in the 
course of their thermochemical processing. Among 
these, one may inention the processes of drying [7] and 
chemical conversion [8] of powders and granulated 
solids, including widespread technologies of either 
oxidation or reduction under flow conditions. A par- 
ticular case is also provided by the combustion of 
liquid dropwise and powdered solid fuels in different 
circumstances [9]. The kinetics of all these processes 
is governed by the rate of exchange of heat and mass 
of various relevant reagents between the particulate 
assemblage under question and the ambient medium 
which may be either gaseous or condensed. 

The obvious need for the proper design of the 
above-mentioned processes in practice, as well as the 
selection of optimal performance conditions, nat- 
urally necessitates the development and careful elab- 
oration of corresponding models and calculation 
schemes. A review of the suggestions advanced so far 
can be found in the references cited above and also in 
ref. [lo]. The models and schemes are usually based 
on the study of the solutions to the kinetic equation 
of the particle population density for the particle size 
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NOMENCLATURE 

A kernel in equations (23) and (24) P coefficients in equations (31), (48) and 

B quantity in equation (74) (58) 
a, b coefficients in equations of type (16) Y coefficient in equation (58) 
C concentration, also specific heat constant coefficient 

capacity Z temperature difference 
D diffusivity 
E activation energy ; 

heat capacity ratio in equation (52) 
heat conductivity, also coefficients 

r” 

function introduced by equation (5) in equations (32), (34), (38) and 
distribution density (77) 

G mass flow rate lJ ratio of initial mass of droplets to that 
K, K, empirical coefficients Of f$ttS 

k mass transfer coefficient, also 5 variable of particle distribution 
parameter in equation (48) and kinetic P density 
constant in equation (58) z characteristic time defined in equations 

L latent heat of evaporation (66) and (68), also dimensionless 
M, N functions introduced in equation (2) time in Fig. 3 
n number concentration of particles 4J degree of reduction. 
NU Nusselt number 
Q, q effective heats introduced in equation 

(48) 
qR reaction heat 
R function introduced by equation (5) 

Subscripts 

particle radius 
b r boiling 

s parameter in equation (5) and in other 
f reaction front 

relations of the same kind gdS 

T temperature 
E hydrogen 

t time 0 initial 

V velocity P particles, also constant pressure 

W transformation rate, dr/dt or di;/dt 
S saturation, also solid 

X coordinate vector 
V vapour. 

Y degree of transformation. 

Greek symbols 
cl function in equation (26), also Superscript 

parameter in equation (32) and heat * equilibrium temperature or 
transfer constant in equation (58) concentration. 

or another significant parameter, with allowance for 
spontaneous origination of new critical nuclei and 
external supply or withdrawal of particles, as well 
as on a set of pertinent mass and heat conservation 
equations. All the equations are strongly non-linear, 
partly due to the dependence of the transient state 
of the ambient medium on the rate of assemblage 
evolution. Sometimes this causes unsurmountable 
difficulties in solving them. 

Without going into particulars, we will enumerate 
three basic methods conventionally used to overcome 
these difficulties. The first consists of the reduction of 
the kinetic equation to an integro-differential one and 
the subsequent investigation of the latter equation. 
The second method involves replacing the kinetic 
equation by a few equations for the main moments of 
the particle distribution over the indicated parameter. 
The third method involves dividing an actual poly- 

disperse system into a set of interacting fractions con- 
sisting of approximately uniform particles, and bring- 
ing into effect separate kinetic equations for all the 
fractions-the operation lacking both principles and 
ideas. The listed approaches commonly lead to rather 
tedious and cumbersome calculations. The intended 
purpose of this paper is to suggest a very simple alter- 
native method which seems to be quite sufficient for 
the majority of applications. 

2. BASIC EQUATIONS AND A GENERAL 

METHOD 

We consider a polydisperse particulate assemblage 
involved in mass and heat exchange with an ambient 
medium. The exchange results in either changes in the 
particle size, as in the case of evaporation, conden- 
sation, crystallization, granulation, dissolution and 
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combustion processes, or changes in some other per- 
tinent character that can be assigned to define the 
transient state of a particle. Representative examples 
are provided by drying processes, when the moisture 
content of any particle plays the role of such a charac- 

1 ter, and also by chemical transformation processes, 
such as oxidation or reduction of a powdered material, 
when the amount of conversion attributed to a single 
particle is significani. Although there may be several 
relevant parameters characterizing the particles which 
must be taken into account simultaneously while 
studying the assemblage evolution, we confine our- 
selves below to treating situations in which only one 
parameter, henceforth denoted as t, is essential. 

The particles are assumed to be continuously dis- 
tributed over the parameter 5, so that the assemblage 
is to be described with the help of the particle popu- 
lation density, f(t, x; g), which is regarded as nor- 
malized to the number concentration n(t,x) of the 
particles. If possible, the fluctuations in the rate dif/dt 
of change of 4 are ignored ; this quantity has to be 
looked upon as a deterministic one, and there is no 
need to allow for particle diffusion along the t-axis. 
We also suppose that there are no external sources or 
sinks of particles, and the origination of new particles 
from initial parent nuclei may be neglected. The par- 
ticle concentration is then constant or decreases with 
time, and the evolution of f(t, x ; 5) is governed by a 
first-order kinetic equation : 

function determined by the physical essence of the 
process being investigated. The term on the right-hand 
side of equation (3) presents an effective source of 
quantity ci per unit volume caused by the particle 
transformation. 

Imposing the initial conditions 

J’(O,x;O =A,@;0 s .L(x;5)d5 = G(X) 

c;(O, x) = c;,(x) (4) 

limits the problem of solving equations (l)-(3). It is 
worth noting that the conditions may be imposed not 
at the initial instant t = 0, but at some fixed x or even 
at a certain surface x = x,(t). 

The essence of the method suggested is really very 
simple. By making use of the fact that w is expressed 
in the form of equation (2), we look for elementary 
solutions of equation (1) in a familiar form and con- 
struct a complete solution by means of summing the 
elementary ones. This gives 

.f(t, x; 4) = qw, x; 4R(4,4> (5) 

where s is the free parameter and the symbol S{. .} 
indicates summation or integration over different s. 
Equation (1) then splits into two equations : 

;+&F)+2.M= 0 d”r (NR) -2sR = 0 (6) 

and equation (3) reduces to 

g+;(vf)+$(wf) =o d5 
w=dt (1) ac, a 

Yg + g(w) = ll,s F(f, x; 4 
which is the simplest version of the Fokker-Plank 
equation. 

The quantity w has to be regarded as a function of 
t, x and t. In what follows, we give attention to the 
cases in which w is expressed as a product of separate 
functions of t and x, and of [, and which covers the 
great majority of possible applications. Thus : 

w = M(t,x)N((). (2) 
Exact forms of the functions in equation (2) are 

dictated by the very nature of the process under study 
and by the kinetic peculiarities of the transformation 
of a single particle. The function M(t,x) usually 
depends implicitly on its arguments, through some 
variables which are employed to describe the instan- 
taneous state of the ambient medium, such as the 
medium temperature T and concentrations ci of vari- 
ous admixtures and reagents. Equation (1) must be 
supplemented with equations for the variables stem- 
ming from the mass and energy conservation laws. A 
representative of such equations can be written in 
symbolic form as 

2 + ; (VCJ = qj s J’(t > x; 5)w(t, x; 5)4i(O d< (3) 

where integration is performed over the whole range 
of allowable 5, and vi and &(4) are a coefficient and 

x M(t, x) R(5 ; 4 N(D$i(O @ 
s 1 

(7) 

Let us solve the equation for R (4 ; s) in the set of 
equations (6) at a given s accurate to an arbitrary 
constant multipJier and then accept fO(x ; <) as suc- 
cessfully approximated in a form similar to that of 
equation (5) : 

.fb(x;O = S{t;,(x;M(5;$). (8) 

The first equation in set (6) and equations (7) for all 
ct(t, x) together with the last conditions in (4) and the 
initial condition F(0, x ; s) = F,(x ; s) present a correct 
problem to determine both F(t, x ; s) and ci(t, x). 

Thus, the crux of the matter lies in approximating 
the initial population density in compliance with equa- 
tion (8). Usually this can be done in a reasonable way 
by using a few terms in equation (8) that correspond 
to different s and suitable functions F,(x ; s). 

To simplify the matter, we consider the system 
under conditions of ideal mixing, when all the vari- 
ables are only time-dependent. By way of an example, 
we concentrate on a detailed discussion of a mist evap- 
oration problem. Let us presume for the sake of defi- 
niteness that the reduction of liquid droplets sus- 
pended in a gaseous mixture is limited by the rate of 
diffusional transport of the vapour away from a drop- 
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let and the thermal effect of evaporation may be 
ignored. These conditions are actually met if the mix- 
ture temperature is well below the liquid boiling point 
and the vapour concentration is low enough. In this 
case, there is only the parameter-the droplet radius 
r-that determines the state of the droplets and the 
only relevant mixture characteristic is the mean vap- 
our concentration c(t). Moreover, if the droplet radius 
is much larger than the mean free path length of mol- 
ecules in the gas, 

w+&t)-c*(t)] 

M=+c*(f)] N=; 
and equation (3) can be integrated to yield 

(9) 

c(t) = co+$m,(r~)--y s J'(t;r)r3dr. (10) 

By applying the well-known method of charac- 
teristics to the problem under study, one gets from 
equations (1) and (9) 

J’(t ; r) = .L[V + Q(t)) “‘I 

O(t) = “,” 
s 
’ [c*(t) -c(t)] dt (11) 
0 

for any functions ,f”(r) and Q(t). Next, substituting 
equations (11) into equation (10) one obtains an inte- 
gral equation for Q(t), the solution of which is not a 
simple task. The last function determines the vapour 
concentration in an explicit form : 

c(t) = c*(t) ~ & gy (12) 

and, further,f(t ; r) in accordance with the relation in 
the set of equations (11). 

Now we are going to apply the proposed method to 
the same problem. The desired solution of the second 
equation in set (6) is 

R(r;s) = 2Csrexp(--r*) (13) 

C being a constant. The simplest case is that in which 
the initial population density can be approximated 
with sufficient accuracy by function (13) with a certain 
s. It is then convenient to choose C = n, from the 
very beginning and, consequently, to demand that 
F,= 1. 

The first equation in set (6) can now be represented 
in the form 

dF 20 
x + ps[c*(t) -c(t)]F = 0 F(0) = 1 (14) 

and equation (10) yields 

c(t) = c,-(4n/3)pn,(r:)[l --F(t)]. (15) 

The use of the last formula in set (14) results in 

$+a(t)~+bFz = 0 

(16) 

It is not difficult to solve the equation in set (16) at 
an arbitrary dependence of c* on t that might be 
dictated by the thermal regime of evaporation. If iso- 
thermal conditions are maintained, both c* and a are 
independent of time, and 

F(t) = [(l +b/a)exp (at)-b/u]-’ 

z (1 +b/a))’ exp (-at) (17) 

the approximate equality being valid at at >> 1. In 
view of equations (5) and (13), the size distribution 
density and the particle number concentration are 
expressed as 

,f(t; r) = 2sn,F(t)vexp ( -sY*) 

n(t) = n,F(t) s = (+):, (18) 

with F(t) being defined in equation (17). It is worth- 
while to point out that the particle population density 
(18) is self-similar in the sense that the assemblage 
evolution affects merely the total number of droplets 
which eventually vanish during the process and not 
the distribution moments (Y:) at any m. 

In a more general case, the initial population density 
cannot be represented according to equation (13). 
However, it can sometimes be given as a sum of a 
few elementary self-similar functions of the type of 
equation (13) : 

fo(v) = 2 i C,Sirexp(-Lri?) i C, = n,. (19) 
*=1 i= 1 

In order to obtainf(t ; r), each elementary function 
R(r ;sJ must be multiplied by a certain F(t ; xi), and 
then the products have to be summed similarly to 
equation (19). The problem of finding F(t ; s,) is essen- 
tially the same as before, with s being replaced by sP 
Hence, equations similar to that in set (14) follow. 
They lead at once to the following relations : 

s,lnE; = s,lnF,, F: = F) F, = F(t;sJ 20) 

for any numbers i and ,j smaller that I in equation 

(19). 
Because of the obvious inequality F(t ; SJ < 1 at 

t > 0, it can be seen that the maxima of the population 
density attained at small values of r degenerate faster 
than those reached at larger ones. This means that 
any moment (r”) must increase with time due to 
the assemblage evaporation. Moreover, relations (20) 
prove that only a single function among F(t ; xi) must 
be found to determine all of them. For definiteness, 
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we arrange si in such a way that s, > s, at j > i and 
choose F(t ; s,) = F,(t) to be determined first. After a 
simple manipulation, we arrive at a problem 

“d’;‘+ a, + i b,F;‘“’ F, = 0 F, (0) = 1 
I= I 

b, = 
27~~” Ds 
AC,. 

$12 

This equation can be integrated numerically. 
Besides, if c* is constant and si = kpr and ki are 
integral numbers, the right-hand side of the equation 
represents a polynomial. After expanding the poly- 
nomial into elementary multipliers, the equation can 
be integrated to yield an algebraic transcendental 
equation relating F, to t in implicit form. 

The size distribution density is expressed in this case 
as 

‘? 

J.(t;I) = 2 i C,s,F”;‘“‘(t)vexp(-siY2). (22) 
I= I 

At last, we turn to the case when the initial dis- 
tribution is described by an arbitrary continuous func- 
tionfO(v) with a finite number of discontinuities of the 
first kind. The very form of equation (13) suggests 
looking for f(t ; r) as an integral transformation of a 
certain function F(t ; s), with a kernel belonging to the 
same class as function (13). It means that [I I] 

f (t; r) = Y 
s 

y3 A(s) F(t;s) exp (-sr*)ds (23) 
0 

and, after accepting that F(0 ; s) = 1, 

O3 j:(r) = r 
s 

A(s) exp (-sr’) ds. (24) 
0 

With the introduction of a new independent vari- 
able p = Y’ we are able to rewrite equation (24) as a 
Laplace transformation : 

.f, / 
r I s I=& 

A(s) exp ( - sp) ds (25) 
0 

which enables us to regard the unknown function A(s) 
as the inverse Laplace transformation of the known 
function, that is, of the one on the left-hand side of 
the equation (25). 

It is natural, by analogy with equation (20), to 
take F(t;s) = F”(t), in which case we obtain from 
equations (1) (9), (10) and (23) 

$+ (z(t)+n”/‘n[: A(s) 

x exp (-sr2)F”s-5i2 ds F = 0 

F(0) = 1 sa(t) = u(t). (26) 

The function a(t) is expressed in terms of a(t) from 
equation (16) and is independent of s. This equation 
is integro-differential as well as that resulting from 
equations (10) and (11). However, it seems to be some- 
what simpler and more apt to be investigated numeri- 
cally than the latter equation. Solving equation (26) 
brings to an end the matter of finding the population 
density in the form of equation (23). 

Thus, we are now capable of envisaging the conse- 
quences of the assemblage evolution in full detail 
under sufficiently general initial conditions. The 
developed calculation scheme possesses an evident 
advantage over conventional ones based on either 
dividing the assemblage into separate fractions or con- 
sidering changes in moments of the particle size dis- 
tribution. Even so, it can be greatly simplified further 
when evaluating the majority of processes of practical 
interest. 

Irrespective of its initial form, the population den- 
sity commonly tends to a self-similar function of type 
(18) as time grows. Such a conclusion can be immedi- 
ately drawn from equation (22) since si/s, > 1 for all 
i > 1 and F,(t) is smaller than unity and mon- 
otonously decreases with time. With this provision, 
the first term in the series in equation (22) inevitably 
becomes dominant at large t, no matter what 
coefficients C, are assigned to determine the initial 
distribution in accordance with equation (19). Thus, 
after an interval of time, the system forgets particulars 
of its initial state and, consequently, a final self-similar 
stage of the assemblage evolution ultimately takes 
place, during which that part of the initial distribution 
that corresponds to the largest droplets remains essen- 
tial. 

The self-similar stage often happens to be much 
longer than the initial one, and it is only the former 
stage that usually governs evolution processes at large. 
This is a rather fortunate occurrence, because the 
population distribution density and other pertinent 
assemblage and ambient medium characteristics are 
then advantageously described by equations (17) and 
(18), and by simple formulae which result from these 
equations. Among those characteristics, the degree of 
transformation 

u(t) = n(O<ri(0)l~,<G) (27) 
is commonly of especial use. The quantity (r’(t)) 
remains unchanged and u(t) = n(t)/n,, = F(t) during 
the self-similar stage. 

An important point is that the above inference is of 
general character and, for example, is not affected by 
either neglect of the thermal effect of evaporation or 
use of the simplest formula (9) for the evaporation 
rate. Both of the last assumptions are, in principle, 
unnecessary and have been successfully avoided in ref. 

[ill. 

3. EXAMPLES OF APPLICATION 

In the remainder of this paper we turn to a brief 
account of a few concrete problems concerning diverse 
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Fig. 1. Kinetics of dissolution of CaSO, .2H,O crystals in water in mixer-type devices (a) and of KC1 crystals 
in water in a counter-flow apparatus (b) ; curves, equation (32), dots ; experiments in ref. [5]. 

physical situations. Each of them appears to be of 
independent interest in the corresponding field of 
applied science. At the same time, when taken toge- 
ther, these problems convincingly demonstrate the 
great capability of the method developed above for 
treating assemblage evolution in different circum- 
stances. 

3.1. Dissolution of dispersed solids 
A review of numerous technological processes 

which involve dissolution of a polydisperse system of 
solids particles in a liquid mixture can be found in ref. 
[5]. If particles dissolve in a device with intense mixing, 
the dissolution rate of a single particle happens to 
be approximately independent of its size and can be 
described by a formula 

where k is a constant mass transfer coefficient. This 
formula holds true in a mixer-type apparatus, in which 
there is a periodic external supply of solids and with- 
drawal of solution, as well as under the conditions of 
co-current two-phase mixture flow. In both cases the 
mass balance equation can be written as [5] 

c(t) = c0 + P[l -v(t)1 (29) 

where the degree of transformation y(t) has to be 
defined in accordance with equation (27) and b stands 
for the mass of solids per unit volume of the mixture. 

By using the kinetic equation with w identified in 
(28) we get a self-similar solution : 

,f(t;r) = F(t) R(t) R(r) = n,sexp(-sr) 

F(t) = y(t) s.= (r,)-1 (30) 

which substitutes for that defined by equations (5) 
and (13). An equation governing the degree of trans- 
formation is derived with the help of equation (29) in 
the same manner as before. It coincides with equation 
(16) where, now [12], 

a = (ks/p)(c*-c,-/?) b = /?ks/p. (31) 

The relevant solution is given by equation (17) with 
the above coefficients a and b. It can be conveniently 
rewritten in the form 

y(t) = [(I -x))’ exp(ilt)+a-‘1-i 

CI = (c*-c,)/p i = (ks/p)(l -a). (32) 

Under the conditions of counter-current flow, equa- 
tions (28) and (29) must be replaced by [5] 

w(t) = -(k/p)[c*-c,-fly(t)] c(t) = c,+B(t). 

(33) 

In this case, equation (32) is valid as before but [12] 

/z = (ks/p)a. (34) 

Comparison of theoretical results from equations 
(32) with experiments of refs. [5, 131 is illustrated 
in Figs. 1 and 2. The agreement seems to be quite 

1 

Fig. 2. Kinetics of dissolution of NaCl crystals in mixer-type 
apparatuses according to equation (32) ; dots, data of ref. 

t131. 
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satisfactory in spite of the fact that the simplest poss- 
ible solution of the problem has been actually used to 
correlate the experimental findings. It is worth noting 
that achieving the same purpose of making the theory 
agree with experiments required a tremendous volume 
of numerical calculations in ref. [5] and, especially, in 
ref. [13], where the system was subdivided into sep- 
arate particulate fractions. 

7 

3.2. Evaporation of apolydisperse mist 
We consider, next, liquid droplets suspended in an 

ambient gas-vapour mixture whose temperature is 
sufficiently close to or even considerably exceeds the 
liquid boiling point. The kinetics of evaporation is 
dictated by the rate of heat transport to the droplets, 
in contrast with the evaporation in a relatively cool 
gaseous medium, which was studied at the end of the 
preceding section, when the kinetics was governed by 
the rate of vapour removal away from the surface of 
a droplet. Such a process constitutes in essence the 
evaporative cooling of gases and is rather popular in 
power engineering. 

An empirical expression of the rate of evaporation 
of a single droplet results in [ 141 

dr 
-= 
dt 

where know plays the role of a constant heat exchange 
coefficient and m is a constant factor. The mass bal- 
ance equation of the type of either equation (29) or 
(33) has to be replaced by that for the heat balance : 

CP = c&.+/.l(l -y)c, (36) 

where ,u is the ratio of an initial mass of the droplets 
to the mass of gas, cP is the isobaric heat capacity 
of the gas-vapour mixture expressed in terms of the 
specific heat capacities cg and c, of the gas and vapour, 
respectively, and y is understood to be the degree of 
evaporation in compliance with equation (27). Equa- 
tion (36) establishes the fact that heat delivered to 
the droplets from the mixture is spent entirely on 
evaporation. The saturation temperature TS is 
assumed constant under the condition of constant 
pressure. 

Now, the self-similar distribution density is of the 
form 

f(t ; 4 = fXt)R (4 fW = Y (t) 

R(r) = n,(m+ 1)~” exp (-srm+‘) 

mf2 ??+l 
s= rp i( )I m+l 

((rO))-(m+‘) (37) 

where I(x) denotes the Eulerian gamma-function, 
and F(t) satisfies the equation 

dF 
dt+19F=0 9=T-T,/l= (m+ l)(<r,))“k 

PL 
s. 

(38) 

In the particular cases when m = 1 and m = 0, we get, 
from equation (37), formulae (18) and (30). 

Equation (36) yields 

r.c,(y) 9(y) = 9,- cYln 9, = T, - T, (39) 
% 

and, next, it follows from equations (38) and (39) that 

(40) 

By expanding the second term in this equation into 
the Taylor series and by retaining only the terms up 
to the second order inclusive, we derive a new equation 
instead of equation (40) : 
I 

$ +ay+by’ = 0 a = A(&-9*) 

b=,Q* 9*=e, 
C 

(41) 
E 

The solution of equation (41) under the initial con- 
dition y(0) = 1 is written in the form of equation (17). 
When a and b are identified by equations (41), 

9,-a* 
’ = 9, exp [A($, - 9*) t] - 9* ’ (42) 

Hence, for t >> [l(SJ,-9*)]-‘, 9, > S*, we get 

y= (l-$*/$,)exp[-a($,-9*)t]. (43) 

When 9, < a*, some droplets remain intact after the 
equilibrium state of the mixture is reached. That is 
determined as 

ym = 1 -&J?!J*. (44) 

In the special case when 9, = 9* this state is attained 
in an asymptotic way, and formula (43) must be 
replaced by 

y = (1 +as,t)-1. (45) 

The use of y(t) from equation (42) in equation (36) 
leads to the equation 

!,“,‘,“- ;2+L92;=0 9(0)=9, (46) 
0 

the relevant solution of which to describe the tem- 
perature evolution during the processes of evaporative 
cooling is expressed as [ 141 

9(t) = 9,(1 -s*/$J (1 - (9*/9J 

x eXp[-&9,-$*)t]}-'. (47) 

Figure 3 shows a rather good agreement of the 
above theoretical results with the experimental data 
of Dean et al. [15]. 

3.3. Combustion of a liquid dispersedfiel 
The combustion processes of polydisperse pro- 

pellants rather predominate in various furnaces and 
other devices of different origin and design. The kin- 
etics of these processes is governed by the rate of 
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20 
I 

60 
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of and beyond the front, and of an inert component 
of the gaseous mixture, and T, T, and Tb are the front 
temperature, the gas mixture temperature beyond the 

I 

combustion zone, and the liquid fuel boiling point. 
The equation of the heat balance law per unit gas 

5- mass is 

. 
C&Q: y(O)=1 

9(O) = 9, cp = cg +pu -Y)q+ (49) 

where cg and cpf are the specific heat capacities of the 
gas and the reaction products, respectively, and both 
y and p have their former meaning. 

The population density is now expressible in a form 
similar to equation (1 S), that is, 

f(t ; r) = F(t) R(r) F(t) = Y(f) 

R(u) = 2n,svexp (-SY’) s = 71/4(~,)~ (50) 
Fig. 3. Kinetics of evaporation of water droplets in hot air 
in accordance with equation (43) and experimental data of 

and the equation for F(t) reads 

ref. [15] (dots); z = /2(9,-9*)t. 
“ds + ZsM(t)F = 0 (51) 

burning of a single particle, which happens to be M(t) being identified as in equation (48). If T, and Tb 
strongly dependent on the very nature of the actual are supposed to be constant, then, by accounting for 
combustion regime. The most common type of such the above expressions of Q and c,,, we obtain from 
regimes includes, as far as the droplets of a liquid fuel equation (49) 
are concerned, preliminary evaporation of the liquid 
from the droplet surfaces and a subsequent exother- Q Ic 

0 
5 K_ G-cg -_= (52) 

ma1 reaction between the vanour and an oxidant in 4 % Cpf 

the gaseous phase. The combustion kinetics is usually 
diffusionally controlled by transport of one of the 

Therefore equation (5 1) becomes 

reagents. Below we consider the evolution of the drop- 
let system by following the model of ref. [16], under 
the conditions that the consumption of the reagents 
strictly correspond to the reaction stoichiometry, that 
there is neither coagulation nor disintegration of drop- 
lets, which are maintained at the liquid boiling point 
temperature, and the mass concentration of the dis- 
persed phase is low. These assumptions are often met 
in practice. The combustion rate of a single droplet in 
the diffusional type of regime is given by the relation 

[I61 
dr 
- = -M(t)N(r) M(t) = li+/llnf 
dt 

N(r) = i Q = q+(cvf-c&A 

q = q,----0--T,) 

A=9,-9 9=T,-T, 

k= 

dy dt +2sky+2s@ ln: y = 0. 
( > 

(53) 

Equation (53) is strongly non-linear because of the 
dependence of cP on y. A considerable simplification 
can be gained by treating the linear version of the 
heat balance equation instead of equation (49). This 
amounts to dropping the term with y from the defi- 
nition of cP in equation (49) and substituting q for Q, 
which means ignoring the heating of the gas at the 
reaction front compared to the thermal effect of the 
reaction. Equation (49) then reduces to 

d9 dy 
cP dt = qdt y(0) + I 9(O) = 9, cP = constant 

(54) 

so that 

9,-g = $*(1-y) P = /.lq/cp. (55) 

The final equation to be obtained for y takes the 
same form as that in equation (16). Its solution is 

p= 4 
a 

P(G-c,) 
(48) ‘= kexp(at)+b 

a = 2sk-b 

Here i and i, are the gas heat conductivities in front 
of and behind the reaction front, respectively, c,, c,r This has to be supplemented with 
and cg denote the heat capacities of the vapor ahead the transient gas temperature : 

b = _2s!5, 
PCP 

(56) 

an expression for 
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Fig. 4. Kinetics of combustion of a spray of liquid fuel 
according to equation (56) ; dots, experiments of ref. [17]. 

r,~T,,+9*{l-u[kexp(at)+b]~‘}. (57) 

Comparison of the theoretical prediction with 
experiments in ref. [17] is demonstrated in Fig. 4. In 
view of natural difficulties encountered when mea- 
suring the properties of burning liquid droplets, the 
agreement seems satisfactory. 

3.4. Combustion of a solid dispersedfuel 
Combustion of solid particles usually differs from 

that of droplets by a more complex mechanism of 
single-particle conversion. An attempt to address the 
problem for a carbon-bearing breeze on the basis of 
the above reasoning has been undertaken in ref. [ 181. 
The combustion rate for one particle is determined by 

[I91 

dr yc 1 -= _- 
dt P k-'+a-' 

D 
cc=-Nu. 

2r (58) 

Here y is the ratio of the mass of gasified carbon to 
that of spent oxygen, p is the particle density, and the 
carbon concentration and diffusivity in the gaseous 
phase are described by 

If the diffusional regime is affected, which is com- 
monly the case for large coal particles, k-’ in equation 
(58) may be ignored and the Nusselt number 

Nu = 2 f KY’ z Kr”‘. (60) 

The functions involved in the general representation 
(2) of w = dr/dt are then as follows : 

M(t) = F y 1 
N(r) = -, 

r’ -in 
(61) 

As before, the heat balance equation is given by 
equation (49), save for the fact that now cr,r means the 
specific heat capacity of the reaction products mixed 
with the remaining oxygen. A linear equation of type 
(55) can again be obtained. It reads 

9 = T, - T,, = 9*(1 -y) 9* = ,uq& (62) 

y being defined by equation (27). 
In this case, 

f(t ; r) = F(t) R(r) F(t) = y(t) 

R(r) = (2-m)sr’-“‘exp (-srz~nz) 

(ro)-(nz-2) (63) 

and F(t) satisfies the equation 

$+(2-m)sMF= 0. 

By using equation (62) and the oxygen mass balance 
equation which can be presented as 

YC” = Y&0 (65) 

where c, is the oxygen concentration at T, = 273 K 
and c,, is the initial fuel concentration, we are able 
to transform M(t) in equation (61) and also get an 
equation for y(t). It would be of the form of equation 
(16) except for both coefficients, a and b, being linearly 
dependent on y. Thus, the equation is 

1 (2 -m)sKc,,D, 
z 2P 

y(0) = 1. (66) 

Its solution can be written in an implicit form as 

D=D&JC=‘.(q (59) tI~[T ~yg*ln(“;‘“* ‘;Y)_l;Y], 
w go 

T, and T, standing for the absolute particle and gas 
temperatures, respectively. (67) 

Diffusionally and kinetically controlled combustion The results of the correlation of the experimental 
regimes must be distinguished, depending on which data in refs. [20, 211 by formula (67) are presented in 
term in the denominator of the first expression in set Fig. 5. Again, the correspondence between the theory 
(58) dominates. In both cases, this expression cor- and experiments appears to be not bad. 
responds to the concept of combustion proceeding A special case is provided by diffusionally con- 
to completion through one primary reaction which trolled combustion at a small Peclet number for one 
transforms carbon directly to carbon dioxide. This is particle. Equation (60) must then be replaced by 
well confirmed by experiments [19]. Nu M 2 and equations (66) and (67) can both be 
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Fig. 5. Kinetics of anthracite breeze combustion in accordance with equation (67) and experimental data of 
refs. [20] (a) and [21] (b) ; different dots correspond to experiments with different values of the air excess 
coefficients ; dashed line, numerical calculation by means of dividing the breeze into several separate fractions. 

shown to hold true if the expression of Z-I in equation 
(66) is changed to 

1 2sc,,D, 

P 
(68) z 

If the kinetic regime is established, we get 
M(t) = y&/p and N(r) = 1 instead of equation (61). 
The population density is again given by the simplest 
expression (30) and the equation for F(t) becomes 
dF/dtfsMF = 0. However, M happens to depend on 
y in a strongly non-linear manner, and a numerical 
solution is needed in a general case. Without going 
into particulars, we point out that the kinetic regime 
has also been studied advantageously in ref. [18] and 
an agreement with the experiments of ref. [ZO] has 
been found. 

3.5 Other problems 
In the remainder of this paper we address ourselves 

to the evolution processes in which the particle popu- 
lation distribution over a certain parameter other than 
the particle radius is relevant. 

Among such processes, the first and most evident 
one concerns the drying of an almost monodisperse 
system of particulate solids, the particles being dis- 
tinguished by their content 5. The density J'(t ; [) of 
the distribution over l is again governed by equation 
(I), and the rate (2) of changing 5 under invariable 
conditions is commonly independent of time, 
M(t) = 1. A general expression 

f(t;5) =S{exp(--t)R(5;~)3 (69) 

of the type of equation (5) happens to be valid, and 
the function R (5 ; s) is determined by the form of N(t) 
in equation (2). 

A simple power law may often be used to describe 
empirically the drying of a single particle [7] : 

dt/dt=w= -T/T (70) 

m and ye being constant parameters. Then, 

G R((;s) = -exp - 
Y5”’ 

Another representation for the drying rate follows 
from the model of ref. [22], according to which a 
particle is divided into two regions : a central core is 
fully saturated with water, whereas a peripheral region 
is completely dry. In this case, 

d5 
-zr 

dt (72) 

where <,, is the maximal moisture content when a 
particle is saturated entirely. Then, 

The relative mass of remaining moisture is to be 
found from the relations 

The number of particles that become dry at a certain 
moment can be determined in a similar way. A cal- 
culation along the above scheme can be carried out in 
a quite straightforward manner, but the real problem 
is merely to approximate the initial distribution den- 
sity with the help of a series or integral in equality 
(69) at t = 0, that is, to find proper coefficients C, at 
R(t ; s) from either equation (71) or (73). This scheme 
can be shown to describe drying processes with a 
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sufficient accuracy without the necessity of making experiments seems to be satisfactory enough to rec- 
use of complicated numerical methods of calculation. ommend equations (77) for practical usage. 

The second example discussed pertains to the pro- 
cess of the reduction of particles of dispersed oxide 
suspended in a how of hydrogen, carbon monoxide 
or another reducing gas. This problem has been tre- 
ated in ref. [23]. Transformation of a single particle 
can be characterized with the help of the empirical 
relation 

4. DISCUSSION 

The primary general conclusion that follows from 
the presented treatment of diverse processes of time 
evolution of various particulate assemblages under 
different circumstances is the assertion that commonly 
there is no need to turn to difficult refined methods of 
theoretical and numerical study in order to foresee 
changes in the pertinent properties of the assemblages 
and processes with a lapse of time. Such properties can 
be well predicted by comparatively simple analytical 
means without recourse to tedious numerical calcu- 
lation. Moreover, a self-similar approximation of the 
particle distribution density works well during the 
final stage of the assemblage evolution whether or 
not the initial density is self-similar from the very 
beginning. A wide variety of examples show that the 
last stage constitutes the main part of the total evol- 
ution period. A serious advantage of the proposed 
approach lies in the straightforward possibility of get- 
ting corrections to results of the self-similar analysis 
by way of introducing a few self-similar terms instead 
of one when correlating the initial distribution. 

d5 Kr Gh 
-=w= _-~ 

dt v, GP 
where Gh and G, are the flow rates of hydrogen and 
the particles at the input of a co-current gas reactor, 
respectively, and K, is a specific constant reduction 
factor. The distribution parameter < = Y is now the 
radius of the particle core that remains unreduced at 
moment t and cp = 1 -y plays the role of the overall 
degree of reduction, y being formally defined by equa- 
tion (27). 

It is easy to derive an equation that governs CJJ in 
the form ‘1 

dp/dt-sw(l-(p) = 0 ~(0) = 1. (76) 

This equation yields a very simple solution : 

q+ln(l--cp) = -At 1 = K,s(G,/G,). (77) 

A significant feature of this formula, which defines 
q as an implicit function of time, is that it does not 
involve a value of s chosen to characterize the initial 
population density. This means that equations (77) 
can be applied to describe the final stage of the 
reduction process under quite a variety of conditions 
and practically irrespective of the original properties 
of the population. 

The validity of equations (77) has been confirmed 
by a great deal of both laboratory and industrial 
experiments. By way of example, in Fig. 6 theoretical 
curves of t are presented as functions of Gh/G, at 
different CJI for iron oxides of two iron ore deposits 
[23] The agreement of the developed theory with these 

40 

F 

20 

0 

In conclusion, let us enumerate the limitations 
inherent in the developed calculation scheme. The 
most prominent consequences are the assumptions 
concerning the absence of both external and internal 
sources and sinks of particles, and the insignificance 
of an intrinsic scatter of the transformation rate for 
identical particles caused by random reasons, thus 
permitting the diffusional term to be dropped from 
the kinetic equation (1). It would certainly seem prom- 
ising to try to extend the scheme in such a way as to 
allow for all of the mentioned effects. This is not a 
simple matter to do, but some progress can be attained 
by supplementing the above method with new recently 
suggested ideas which are relevant when taking into 

Fig. 6. Correlations between reduction time and ratio of hydrogen flow rate to that of particles at various q 
for iron ore particles from deposit in Kachkanar at T= 880°C (a) and from deposit in Kremenchug at 

T = 680°C (b) ; I-I, q~ = 0.8, 0.7,0.6 and 0.5, respectively; dots, data of ref. [23]. 
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account the natural origination of particle nuclei in solution of a polydisperse particulate system, Tear. 

metastable surroundings [24], with a due regard for 
Osnovy Khim. Tekhnol. 16, 597-603 (1982). 

the existence of an external supply, and the effect 
13. Nikolaeshvili et al., Rate of dissolution of solid particles 

of the withdrawal of the transformation of a single 
in apparatuses with mixers, Tear. Osnovy Khim. Tekhnol. 
14,349-357 (1980). 

particle upon the particle distribution over size or 14. G. P. Yasnikov. On kinetics of a self-similar r&me of 

another parameter [25, 261. 
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